Panel Data Models with Unobserved Multiple Time- Varying Effects to Estimate Risk Premium of Corporate Bonds
Oualid Bada and
Alois Kneip
MPRA Paper from University Library of Munich, Germany
Abstract:
We use a panel cointegration model with multiple time- varying individual effects to control for the missing factors in the credit spread puzzle. Our model specification enables as to capture the unobserved dynamics of the systematic risk premia in the bond market. In order to estimate the dimensionality of the hidden risk factors jointly with the model parameters, we rely on a modified version of the iterated least squares method proposed by Bai, Kao, and Ng (2009). Our result confirms the presence of four common risk components affecting the U.S. corporate bonds during the period between September 2006 and March 2008. However, one single risk factor is sufficient to describe the data for all time periods prior to mid July 2007 when the subprime crisis was detected in the financial market. The dimensionality of the unobserved risk components therefore seems to reflect the degree of difficulty to diversify the individual bond risks.
Keywords: Panel Data Model; Factor Analysis; Credit Spread; Systematic Risk Premium (search for similar items in EconPapers)
JEL-codes: C33 (search for similar items in EconPapers)
Date: 2010-10-19
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/26006/1/MPRA_paper_26006.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:26006
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().