EconPapers    
Economics at your fingertips  
 

A comparison of data mining methods for mass real estate appraisal

Carlos del Cacho

MPRA Paper from University Library of Munich, Germany

Abstract: We compare the performance of both hedonic and non-hedonic pricing models applied to the problem of housing valuation in the city of Madrid. Urban areas pose several challenges in data mining because of the potential presence of different market segments originated from geospatial relations. Among the algorithms presented, ensembles of M5 model trees consistently showed superior correlation rates in out of sample data. Additionally, they improved the mean relative error rate by 23% when compared with the popular method of assessing the average price per square meter in each neighborhood, outperforming commonplace multiple linear regression models and artificial neural networks as well within our dataset, comprised of 25415 residential properties.

Keywords: mass appraisal; real estate; data mining (search for similar items in EconPapers)
JEL-codes: L85 (search for similar items in EconPapers)
Date: 2010-12-11
New Economics Papers: this item is included in nep-cmp and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/27378/1/MPRA_paper_27378.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:27378

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:27378