A Bayesian Model of Sample Selection with a Discrete Outcome Variable
Maksym Obrizan
MPRA Paper from University Library of Munich, Germany
Abstract:
Relatively few published studies apply Heckman’s (1979) sample selection model to the case of a discrete endogenous variable and those are limited to a single outcome equation. However, there are potentially many applications for this model in health, labor and financial economics. To fill in this theoretical gap, I extend the Bayesian multivariate probit setup of Chib and Greenberg (1998) into a model of non-ignorable selection that can handle multiple selection and discrete-continuous outcome equations. The first extension of the multivariate probit model in Chib and Greenberg (1998) allows some of the outcomes to be missing. In addition, I use Cholesky factorization of the variance matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler. Finally, using artificial data I show that the model is capable of retrieving the parameters used in the data-generating process and also that the resulting Markov Chain passes all standard convergence tests.
Keywords: Markov Chain Monte Carlo; sample selection; multivariate probit (search for similar items in EconPapers)
JEL-codes: C11 C15 C35 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/28577/1/MPRA_paper_28577.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:28577
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().