Combining Rasch and cluster analysis: a novel method for developing rheumatoid arthritis states for use in valuation studies
H McTaggart-Cowan,
John Brazier () and
Aki Tsuchiya ()
MPRA Paper from University Library of Munich, Germany
Abstract:
Purpose: Health states that describe an investigated condition are a crucial component of valuation studies. The health states need to be distinct, comprehensible, and data-driven. The objective of this study was to describe a novel application of Rasch and cluster analyses in the development of three rheumatoid arthritis health states. Methods: The Stanford Health Assessment Questionnaire (HAQ) was subjected to Rasch analysis to select the items that best represent disability. K-means cluster analysis produced health states with the levels of the selected items. The pain and discomfort domain from the EuroQol-5D was incorporated at the final stage. Results: The results demonstrate a methodology for reducing a dataset containing individual disease-specific scores to generate health states. The four selected HAQ items were bending down, climbing steps, lifting a cup to your mouth, and standing up from a chair. Conclusions: Overall, the combined use of Rasch and cluster analysis has proved to be an effective technique for identifying the most important items and levels for the construction of health states.
Keywords: health state; Rasch analysis; cluster analysis; quality of life; rheumatoid arthritis (search for similar items in EconPapers)
JEL-codes: I19 I31 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/29834/1/MPRA_paper_29834.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:29834
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().