Confidence intervals in stationary autocorrelated time series
George Halkos and
Ilias Kevork ()
MPRA Paper from University Library of Munich, Germany
Abstract:
In this study we examine in covariance stationary time series the consequences of constructing confidence intervals for the population mean using the classical methodology based on the hypothesis of independence. As criteria we use the actual probability the confidence interval of the classical methodology to include the population mean (actual confidence level), and the ratio of the sampling error of the classical methodology over the corresponding actual one leading to equality between actual and nominal confidence levels. These criteria are computed analytically under different sample sizes, and for different autocorrelation structures. For the AR(1) case, we find significant differentiation in the values taken by the two criteria depending upon the structure and the degree of autocorrelation. In the case of MA(1), and especially for positive autocorrelation, we always find actual confidence levels lower than the corresponding nominal ones, while this differentiation between these two levels is much lower compared to the case of AR(1).
Keywords: Covariance stationary time series; Variance of the sample mean; Actual confidence level (search for similar items in EconPapers)
JEL-codes: C10 C15 C22 (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/31840/1/MPRA_paper_31840.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:31840
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().