EconPapers    
Economics at your fingertips  
 

An Algorithm for payoff space in C1 parametric games

David Carfì (), Angela Ricciardello and Santa Agreste

MPRA Paper from University Library of Munich, Germany

Abstract: We present a novel algorithm to determine the payoff-space of certain normal-form C1 parametric games, and - more generally - of continuous families of normal-form C1 games. The algorithm has been implemented by using MATLAB, and it has been applied to several examples. The implementation of the algorithm gives the parametric expressions of the critical zone of any game in the family under consideration both in the bistrategy space and in the payoff space and the graphical representations of the disjoint union (with respect to the parameter set of the parametric game) of the family of all payoff spaces. We have so the parametric representation of the union of all the critical zones. One of the main motivations of our paper is that, in the applications, many normal-form games appear naturally in a parametric fashion; moreover, some efficient models of coopetition are parametric games of the considered type. Specifically, we have realized an algorithm that provides the parametric and graphical representation of the payoff space and of the critical zone of a parametric game in normal-form, supported by a finite family of compact intervals of the real line. Our final goal is to provide a valuable tool to study simply (but completely) normal-form C1-parametric games in two dimensions.

Keywords: two player normal form games; bargaining problems; cooperative games; competitive games; complete study of a normal-form game (search for similar items in EconPapers)
JEL-codes: C7 C71 C72 C73 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/32099/1/MPRA_paper_32099.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:32099

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:32099