H ασυμπτωτική διακύμανση στην εκτίμηση του στάσιμου μέσου υπό συνθήκες αυτοσυσχέτισης
Using the asymptotic variance to estimate the stationary mean under autocorrelation
George Halkos and
Ilias Kevork ()
MPRA Paper from University Library of Munich, Germany
Abstract:
In this study, using Monte Carlo simulations, we evaluate three alternative methods for constructing confidence intervals for the population mean in the case of a stationary first order autoregressive process, AR(1), with parameter ф. Differentiating the three methodologies with respect to the way of estimating the asymptotic variance, we infer that in constructing confidence intervals we have to avoid the use of the observations of the time series under consideration for the estimation of the autovariance and the autocorrelation coefficients. Instead, it is preferable to identify the series according to Box-Jenkins and then use the asymptotic variance derived from the corresponding ARMA model after the substitution of the OLS parameter and error variance estimates. It is worth mentioning that using the asymptotic variance, for small samples and in the case of an AR(1) with positive ф values, the expected actual confidence levels are larger as compared to the corresponding nominal ones, indicating a potential area for future research.
Keywords: Ασυμπτωτική διακύμανση δειγματικού μέσου; διαστήματα εμπιστοσύνης; αυτοπαλίνδρομο σχήμα πρώτου βαθμού AR(1) (search for similar items in EconPapers)
JEL-codes: C10 C50 (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/33324/1/MPRA_paper_33324.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:33324
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().