Arrow’s Impossibility Theorem and the distinction between Voting and Deciding
Thomas Colignatus ()
MPRA Paper from University Library of Munich, Germany
Abstract:
Arrow’s Impossibility Theorem in social choice finds different interpretations. Bordes-Tideman (1991) and Tideman (2006) suggest that collective rationality would be an illusion and that practical voting procedures do not tend to require completeness or transitivity. Colignatus (1990 and 2011) makes the distinction between voting and deciding. A voting field arises when pairwise comparisons are made without an overall winner, like in chess or basketball matches. Such (complete) comparisons can form cycles that need not be transitive. When transitivity is imposed then a decision is made who is the best. A cycle or deadlock may turn into indifference, that can be resolved by a tie-breaking rule. Since the objective behind a voting process is to determine a winner, then it is part of the very definition of collective rationality that there is completeness and transitivity, and then the voting field is extended with a decision.
Keywords: economic crisis; voting theory; democracy; economics and mathematics (search for similar items in EconPapers)
JEL-codes: A10 D71 P16 (search for similar items in EconPapers)
Date: 2011-11-21, Revised 2011-11-21
New Economics Papers: this item is included in nep-cdm, nep-hpe and nep-pol
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/34919/1/MPRA_paper_34919.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:34919
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().