A simple axiomatics of dynamic play in repeated games
Laurent Mathevet
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper proposes an axiomatic approach to study two-player infinitely repeated games. A solution is a correspondence that maps the set of stage games into the set of infinite sequences of action profiles. We suggest that a solution should satisfy two simple axioms: individual rationality and collective intelligence. The paper has three main results. First, we provide a classification of all repeated games into families, based on the strength of the requirement imposed by the axiom of collective intelligence. Second, we characterize our solution as well as the solution payoffs in all repeated games. We illustrate our characterizations on several games for which we compare our solution payoffs to the equilibrium payoff set of Abreu and Rubinstein (1988). At last, we develop two models of players' behavior that satisfy our axioms. The first model is a refinement of subgame-perfection, known as renegotiation proofness, and the second is an aspiration-based learning model.
Keywords: Axiomatic approach; repeated games; classification of games; learning; renegotiation (search for similar items in EconPapers)
JEL-codes: C71 C72 C73 (search for similar items in EconPapers)
Date: 2012-01-17
New Economics Papers: this item is included in nep-gth, nep-hpe and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/36031/1/MPRA_paper_36031.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:36031
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().