On the existence of pure strategy equilibria in large generalized games with atomic players
Alvaro Riascos () and
Juan Pablo Torres-Martinez
MPRA Paper from University Library of Munich, Germany
Abstract:
We consider a game with a continuum of players where only a finite number of them are atomic. Objective functions and admissible strategies may depend on the actions chosen by atomic players and on aggregate information about the actions chosen by non-atomic players. Only atomic players are required to have convex sets of admissible strategies and quasi-concave objective functions. We prove the existence of a pure strategy Nash equilibria. Thus, we extend to large generalized games with atomic players the results of equilibrium existence for non-atomic games of Schemeidler (1973) and Rath (1992). We do not obtain a pure strategy equilibrium by purification of mixed strategy equilibria. Thus, we have a direct proof of both Balder (1999, Theorem 2.1) and Balder (2002, Theorem 2.2.1), for the case where non-atomic players have a common non-empty set of strategies and integrable bounded codification of action profiles. Our main result is readily applicable to many interesting problems in general equilibrium. As an application, we extend Aumann (1966) result on the existence of equilibrium with a continuum of traders to a standard general equilibrium model with incomplete asset markets.
Keywords: Generalized games; Non-convexities; Pure-strategy Nash equilibrium (search for similar items in EconPapers)
JEL-codes: C62 C72 (search for similar items in EconPapers)
Date: 2012-01
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/36626/1/MPRA_paper_36626.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:36626
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().