Testing for predictability in a noninvertible ARMA model
Markku Lanne,
Mika Meitz () and
Pentti Saikkonen
MPRA Paper from University Library of Munich, Germany
Abstract:
We develop likelihood-based tests for autocorrelation and predictability in a first order non- Gaussian and noninvertible ARMA model. Tests based on a special case of the general model, referred to as an all-pass model, are also obtained. Data generated by an all-pass process are uncorrelated but, in the non-Gaussian case, dependent and nonlinearly predictable. Therefore, in addition to autocorrelation the proposed tests can also be used to test for nonlinear predictability. This makes our tests different from their previous counterparts based on conventional invertible ARMA models. Unlike in the invertible case, our tests can also be derived by standard methods that lead to chi-squared or standard normal limiting distributions. A further convenience of the noninvertible ARMA model is that, to some extent, it can allow for conditional heteroskedasticity in the data which is useful when testing for predictability in economic and financial data. This is also illustrated by our empirical application to U.S. stock returns, where our tests indicate the presence of nonlinear predictability.
Keywords: Non-Gaussian time series; noninvertible ARMA model; all-pass process; predictability of asset returns (search for similar items in EconPapers)
JEL-codes: C22 C53 G12 (search for similar items in EconPapers)
Date: 2012
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/37151/1/MPRA_paper_37151.pdf original version (application/pdf)
Related works:
Working Paper: Testing for Predictability in a Noninvertible ARMA Model (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:37151
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().