An Optimal Design of Early Warning Systems: A Bayesian Quickest Change Detection Approach
Haixi Li ()
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper proposed a new optimal design of Early Warning Systems (EWS) to detect early warning signals of an impending financial crisis. The problem of EWS was formulated from a policy maker's perspective. Hence the probability threshold was obtained by minimizing the policy maker's welfare loss. This paper employed the state-of-the-art Bayesian Quickest Change Detection (BQCD) as the methodology to detect the early warning signals as soon as possible. We showed that the BQCD method outperformed the Logit model used in traditional EWS models based on results of simulation exercise and the out-of-sample predictions of the 1997 Asian financial crises. We found that not only early warning signals were stronger prior to a crisis, but also stronger warning signals appeared more frequently. The BQCD method was sensitive to the increase in frequency, hence out-performed the traditional Logit-EWS model.
Keywords: early warning system; financial crises; monetary policy; Bayesian quickest change detection; optimal stopping (search for similar items in EconPapers)
JEL-codes: E5 F3 (search for similar items in EconPapers)
Date: 2012-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/37302/1/MPRA_paper_37302.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:37302
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().