Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter
Mark Jensen
MPRA Paper from University Library of Munich, Germany
Abstract:
We develop an ordinary least squares estimator of the long memory parameter from a fractionally integrated process that is an alternative to the Geweke Porter-Hudak estimator. Using the wavelet transform from a fractionally integrated process, we establish a log-linear relationship between the wavelet coefficients' variance and the scaling parameter equal to the long memory parameter. This log-linear relationship yields a consistent ordinary least squares estimator of the long memory parameter when the wavelet coefficients' population varinace is replaced by their sample variance. We derive the small sample bias and variance of the ordinary least squares estimator and test it against the Geweke Porter-Hudak estimator and the McCoy Walden maximum likelihood wavelet estimator by conducting a number of Monte Carlo experiments. Based upon the criterion of choosing the estimator which minimizes the mean squared error, the wavelet OLS approach was superior to the Geweke Porter-Hudak estimator, but inferior to the McCoy Walden wavelet estimator for the processes simulated. However, given the simplicity of programming and running the wavelet OLS estimator and its statistical inference of the long memory parameter we feel the general practitioner will be attracted to the wavelet OLS estimator.
Keywords: Fractionally Integrated Processes; Long Memory; Wavelets (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (74)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/39152/1/MPRA_paper_39152.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:39152
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().