EconPapers    
Economics at your fingertips  
 

The classical newsvendor model under normal demand with large coefficients of variation

George Halkos and Ilias Kevork ()

MPRA Paper from University Library of Munich, Germany

Abstract: In the classical newsvendor model, when demand is represented by the normal distribution singly truncated at point zero, the standard optimality condition does not hold. Particularly, we show that the probability not to have stock-out during the period is always greater than the critical fractile which depends upon the overage and the underage costs. For this probability we derive the range of its values. Writing the safety stock coefficient as a quantile function of both the critical fractile and the coefficient of variation we obtain appropriate formulae for the optimal order quantity and the maximum expected profit. These formulae enable us to study the changes of the two target inventory measures when the coefficient of variation increases. For the optimal order quantity, the changes are studied for different values of the critical fractile. For the maximum expected profit, its changes are examined for different combinations of the critical fractile and the loss of goodwill. The range of values for the loss of goodwill ensures that maximum expected profits are positive. The sizes of the relative approximation error which result in by using the normal distribution to compute the optimal order quantity and the maximum expected profit are also investigated. This investigation is extended to different values of the critical fractile and the loss of goodwill. The results indicate that it is naïve to suggest for the coefficient of variation a maximum flat value under which the normal distribution approximates well the target inventory measures.

Keywords: Classical newsvendor model; truncated normal distribution; optimality condition; critical fractile; loss of goodwill; relative approximation error (search for similar items in EconPapers)
JEL-codes: C24 C44 M11 M21 (search for similar items in EconPapers)
Date: 2012-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/40414/1/MPRA_paper_40414.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:40414

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-22
Handle: RePEc:pra:mprapa:40414