Least Orthogonal Distance Estimator and Total Least Square
Alessia Naccarato,
Davide Zurlo and
Luciano Pieraccini
MPRA Paper from University Library of Munich, Germany
Abstract:
Least Orthogonal Distance Estimator (LODE) of Simultaneous Equation Models’ structural parameters is based on minimizing the orthogonal distance between Reduced Form (RF) and the Structural Form (SF) parameters. In this work we propose a new version – with respect to Pieraccini and Naccarato (2008) – of Full Information (FI) LODE based on decomposition of a new structure of the variance-covariance matrix using Singular Value Decomposition (SVD) instead of Spectral Decomposition (SD). In this context Total Least Square is applied. A simulation experiment to compare the performances of the new version of FI LODE with respect to Three Stage Least Square (3SLS) and Full Information Maximum Likelihood (FIML) is presented. Finally a comparison between the FI LODE new and old version together with few words of conclusion conclude the paper.
Keywords: Least Orthogonal Distance Estimator; Simultaneous Equation Models; Total Least Square (search for similar items in EconPapers)
JEL-codes: C51 (search for similar items in EconPapers)
Date: 2012-09-17
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/42365/1/MPRA_paper_42365.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:42365
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().