Local Nonparametric Estimation of Scalar Diffusions
Guillermo Moloche
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper studies the functional estimation of the drift and diffusion functions for recurrent scalar diffusion processes from equally spaced observations using the local polynomial kernel approach. Almost sure convergence and a CLT for the estimators are established as the sampling frequency and the time span go to infinity. The asymptotic distributions follow a mixture of normal laws. This theory covers both positive and null recurrent diffusions. Almost sure convergence rates are sometimes path dependent but expected rates can always be characterized in terms of regularly varying functions. The general theory is specialized for positive recurrent diffusion processes, and it is shown in this case that the asymptotic distributions are normal. We also obtain the limit theory for kernel density estimators when the process is positive recurrent, namely, requiring only that the invariant probability measure exists. Nonetheless, it is also shown that such an estimator paradoxically vanishes almost surely when the invariant measure is fat tailed and nonintegrable, that is, in the null recurrent case.
Keywords: Nonparametric estimation; Diffusion processes (search for similar items in EconPapers)
JEL-codes: C14 C22 C58 (search for similar items in EconPapers)
Date: 2001-09-23
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/46154/1/MPRA_paper_46154.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:46154
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().