Market dynamics and agents behaviors: a computational approach
Julien Derveeuw ()
MPRA Paper from University Library of Munich, Germany
Abstract:
We explore market dynamics generated by the Santa-Fe Artificial Stock Market model. It allows to study how agents adapt themselves to a market dynamic without knowing its generation process. It was shown by Arthur and LeBaron, with the help of computer experiments, that agents in bounded rationality can make a rational global behavior emerge in this context. In the original model, agents do not ground their decision on an economic logic. Hence, we modify indicators used by agents to watch the market to give them more economic rationality. This leads us to divide agents in two groups: fundamentalists agents, who watch the market with classic economic indicators and speculator agents, who watch the market with technical indicators. This split allows us to study the influence of individual agents behaviors on global price dynamics. In this article, we show with the help of computational simulations that these two types of agents can generate classical market dynamics as well as perturbed ones (bubbles and kraches).
Keywords: multi-agent; finance; financial market; simulation; bubbles; kraches (search for similar items in EconPapers)
JEL-codes: D40 D53 D58 (search for similar items in EconPapers)
Date: 2005-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/4916/1/MPRA_paper_4916.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:4916
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().