Testing for the buffered autoregressive processes
Ke Zhu (),
Philip L.H. Yu and
Wai Keung Li
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper investigates a quasi-likelihood ratio (LR) test for the thresholds in buffered autoregressive processes. Under the null hypothesis of no threshold, the LR test statistic converges to a function of a centered Gaussian process. Under local alternatives, this LR test has nontrivial asymptotic power. Furthermore, a bootstrap method is proposed to obtain the critical value for our LR test. Simulation studies and one real example are given to assess the performance of this LR test. The proof in this paper is not standard and can be used in other non-linear time series models.
Keywords: AR(p) model; Bootstrap method; Buffered AR(p) model; Likelihood ratio test; Marked empirical process; Threshold AR(p) model. (search for similar items in EconPapers)
JEL-codes: C1 C12 (search for similar items in EconPapers)
Date: 2013-11-25
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/51706/1/MPRA_paper_51706.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:51706
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().