An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation
Christian Francq and
Genaro Sucarrat
MPRA Paper from University Library of Munich, Germany
Abstract:
Estimation of log-GARCH models via the ARMA representation is attractive because it enables a vast amount of already established results in the ARMA literature. We propose an exponential Chi-squared QMLE for log-GARCH models via the ARMA representation. The advantage of the estimator is that it corresponds to the theoretically and empirically important case where the conditional error of the log-GARCH model is normal. We prove the consistency and asymptotic normality of the estimator, and show that, asymptotically, it is as efficient as the standard QMLE in the log-GARCH(1,1) case. We also verify and study our results in finite samples by Monte Carlo simulations. An empirical application illustrates the versatility and usefulness of the estimator.
Keywords: Log-GARCH; EGARCH; Quasi Maximum Likelihood; Exponential Chi- Squared; ARMA (search for similar items in EconPapers)
JEL-codes: C13 C22 C58 (search for similar items in EconPapers)
Date: 2013-10-24
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/51783/1/MPRA_paper_51783.pdf original version (application/pdf)
Related works:
Journal Article: An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:51783
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().