EconPapers    
Economics at your fingertips  
 

OPERATOR METHODS, ABELIAN PROCESSES AND DYNAMIC CONDITIONING

Claudio Albanese

MPRA Paper from University Library of Munich, Germany

Abstract: A mathematical framework for Continuous Time Finance based on operator algebraic methods oers a new direct and entirely constructive perspective on the field. It also leads to new numerical analysis techniques which can take advantage of the emerging massively parallel GPU architectures which are uniquely suited to execute large matrix manipulations. This is partly a review paper as it covers and expands on the mathematical framework underlying a series of more applied articles. In addition, this article also presents a few key new theorems that make the treatment self-contained. Stochastic processes with continuous time and continuous space variables are defined constructively by establishing new convergence estimates for Markov chains on simplicial sequences. We emphasize high precision computability by numerical linear algebra methods as opposed to the ability of arriving to analytically closed form expressions in terms of special functions. Path dependent processes adapted to a given Markov filtration are associated to an operator algebra. If this algebra is commutative, the corresponding process is named Abelian, a concept which provides a far reaching extension of the notion of stochastic integral. We recover the classic Cameron-Dyson-Feynman-Girsanov-Ito-Kac-Martin theorem as a particular case of a broadly general block-diagonalization algorithm. This technique has many applications ranging from the problem of pricing cliquets to target-redemption-notes and volatility derivatives. Non-Abelian processes are also relevant and appear in several important applications to for instance snowballs and soft calls. We show that in these cases one can eectively use block-factorization algorithms. Finally, we discuss the method of dynamic conditioning that allows one to dynamically correlate over possibly even hundreds of processes in a numerically noiseless framework while preserving marginal distributions.

Keywords: Operator methods; financial derivatives; path-dependent derivatives; correlation derivatives (search for similar items in EconPapers)
JEL-codes: G13 (search for similar items in EconPapers)
Date: 2006-12-15, Revised 2007-11-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/5246/1/MPRA_paper_5246.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:5246

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:5246