A condition for determinacy of optimal strategies in zero-sum convex polynomial games
Omar Fdo. Arias-R.
MPRA Paper from University Library of Munich, Germany
Abstract:
The main purpose of this paper is to prove that if there is a non-expansive map relating the sets of optimal strategies for a convex polynomial game, then there exists only one optimal strategy for solving that game. We introduce the remark that those sets are semi-algebraic. This is a natural and important property deduced from the polynomial payments. This property allows us to construct the space of strategies with an infinite number of semi-algebraic curves. We semi-algebraically decompose the set of strategies and relate them with non-expansive maps. By proving the existence of an unique fixed point in these maps, we state that the solution of zero-sum convex polynomial games is determined in the space of strategies.
Keywords: determinacy; polynomial game; semi-algebraic set and function (search for similar items in EconPapers)
JEL-codes: C63 C73 (search for similar items in EconPapers)
Date: 2014-07-03
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/57099/1/MPRA_paper_57099.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:57099
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().