Joint Modeling of Call and Put Implied Volatility
Katja Ahoniemi and
Markku Lanne
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper exploits the fact that implied volatilities calculated from identical call and put options have often been empirically found to differ, although they should be equal in theory. We propose a new bivariate mixture multiplicative error model and show that it is a good fit to Nikkei 225 index call and put option implied volatility (IV). A good model fit requires two mixture components in the model, allowing for different mean equations and error distributions for calmer and more volatile days. Forecast evaluation indicates that in addition to jointly modeling the time series of call and put IV, cross effects should be added to the model: putside implied volatility helps forecast callside IV, and vice versa. Impulse response functions show that the IV derived from put options recovers faster from shocks, and the effect of shocks lasts for up to six weeks.
Keywords: Implied Volatility; Option Markets; Multiplicative Error Models; Forecasting (search for similar items in EconPapers)
JEL-codes: C32 C53 G13 (search for similar items in EconPapers)
Date: 2007
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/6318/1/MPRA_paper_6318.pdf original version (application/pdf)
Related works:
Journal Article: Joint modeling of call and put implied volatility (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:6318
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().