Negative binomial quasi-likelihood inference for general integer-valued time series models
Abdelhakim Aknouche and
Sara Bendjeddou
MPRA Paper from University Library of Munich, Germany
Abstract:
Two negative binomial quasi-maximum likelihood estimates (NB-QMLE's) for a general class of count time series models are proposed. The first one is the profile NB-QMLE calculated while arbitrarily fixing the dispersion parameter of the negative binomial likelihood. The second one, termed two-stage NB-QMLE, consists of four stages estimating both conditional mean and dispersion parameters. It is shown that the two estimates are consistent and asymptotically Gaussian under mild conditions. Moreover, the two-stage NB-QMLE enjoys a certain asymptotic efficiency property provided that a negative binomial link function relating the conditional mean and conditional variance is specified. The proposed NB-QMLE's are compared with the Poisson QMLE asymptotically and in finite samples for various well-known particular classes of count time series models such as the (Poisson and negative binomial) Integer GARCH model and the INAR(1) model. Applications to two real datasets are given.
Keywords: Integer-valued time series models; Integer GARCH; Integer AR; Generalized Linear Models; Quasi-likelihood; Geometric QMLE; Negative Binomial QMLE; Poisson QMLE; consistency and asymptotic normality. (search for similar items in EconPapers)
JEL-codes: C01 C13 C18 C51 (search for similar items in EconPapers)
Date: 2016-12-06, Revised 2017-02-03
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/76574/1/MPRA_paper_76574.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/83082/8/MPRA_paper_83082.pdf revised version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:76574
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().