EconPapers    
Economics at your fingertips  
 

Nash implementable domains for the Borda count

Clemens Puppe () and Attila Tasnádi

MPRA Paper from University Library of Munich, Germany

Abstract: We characterize the preference domains on which the Borda count satisfies Maskin monotonicity. The basic concept is the notion of a "cyclic permutation domain" which arises by fixing one particular ordering of alternatives and including all its cyclic permutations. The cyclic permutation domains are exactly the maximal domains on which the Borda count is strategy-proof (when combined with every tie breaking rule). It turns out that the Borda count is monotonic on a larger class of domains. We show that the maximal domains on which the Borda count satisfies Maskin monotonicity are the "cyclically nested permutation domains." These are the preference domains which can be obtained from the cyclic permutation domains in an appropriate recursive way.

Keywords: Maskin monotonicity; Borda count; restricted preference domains (search for similar items in EconPapers)
JEL-codes: D71 (search for similar items in EconPapers)
Date: 2006-11-07
New Economics Papers: this item is included in nep-cdm and nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/775/1/MPRA_paper_775.pdf original version (application/pdf)

Related works:
Journal Article: Nash implementable domains for the Borda count (2008) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:775

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:775