Economics at your fingertips  

A Methodology for Neural Spatial Interaction Modeling

Manfred Fischer and Martin Reismann

MPRA Paper from University Library of Munich, Germany

Abstract: This paper attempts to develop a mathematically rigid and unified framework for neural spatial interaction modeling. Families of classical neural network models, but also less classical ones such as product unit neural network ones are considered for the cases of unconstrained and singly constrained spatial interaction flows. Current practice appears to suffer from least squares and normality assumptions that ignore the true integer nature of the flows and approximate a discrete-valued process by an almost certainly misrepresentative continuous distribution. To overcome this deficiency we suggest a more suitable estimation approach, maximum likelihood estimation under more realistic distributional assumptions of Poisson processes, and utilize a global search procedure, called Alopex, to solve the maximum likelihood estimation problem. To identify the transition from underfitting to overfitting we split the data into training, internal validation and test sets. The bootstrapping pairs approach with replacement is adopted to combine the purity of data splitting with the power of a resampling procedure to overcome the generally neglected issue of fixed data splitting and the problem of scarce data. In addition, the approach has power to provide a better statistical picture of the prediction variability, Finally, a benchmark comparison against the classical gravity models illustrates the superiority of both, the unconstrained and the origin constrained neural network model versions in terms of generalization performance measured by Kullback and Leibler’s information criterion.

Keywords: n.a. (search for similar items in EconPapers)
JEL-codes: C45 (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5) Track citations by RSS feed

Published in Geographical Analysis 3.34(2002): pp. 207-228

Downloads: (external link) original version (application/pdf)

Related works:
Working Paper: A methodology for neural spatial interaction modelling (2002) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

Page updated 2019-12-18
Handle: RePEc:pra:mprapa:77794