Identification non paramétrique d’un processus non linéaire hétéroscédastique
Nonparametric identification of heteroscedastic nonlinear process
Mohamed Chikhi
MPRA Paper from University Library of Munich, Germany
Abstract:
Cet article vise à identifier un processus non linéaire par la méthode du noyau. Cette identification nécessite une sélection rigoureuse des coefficients de Markov et le choix de la fenêtre qui détermine le degré de lissage de l’estimateur. This paper aims to identify a nonlinear process by the kernel methodology. This identification requires the selection of the Markov coefficients and the choice of bandwidth, which determines the degree of estimator’s smoothing.
Keywords: Final Prediction Error; kernel; bandwidth; functional autoregressive process. (search for similar items in EconPapers)
JEL-codes: C14 C58 G12 (search for similar items in EconPapers)
Date: 2009, Revised 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Revue d’Economie et de Statistiques Appliquées 12 (2009): pp. 9-27
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/82108/1/1104.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:82108
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().