EconPapers    
Economics at your fingertips  
 

Social choice and the closed convergence topology

Graciela Chichilnisky

MPRA Paper from University Library of Munich, Germany

Abstract: This paper revisits the aggregation theorem of Chichilnisky (1980), replacing the original smooth topology by the closed convergence topology and responding to several comments (N. Baigent (1984, 1985, 1987, 1989), N. Baigent and P. Huang (1990) and M. LeBreton and J. Uriarte (1900 a, b). Theorems 1 and 2 establish the contractibility of three spaces of preferences: the space of strictly quasiconcave preferences Psco, its subspace of smooth preferences Pssco, and a space P1 of smooth (not necessarily convex) preferences with a unique interior critical point (a maximum). The results are proven using both the closed convergence topology and the smooth topology. Because of their contractibility, these spaces satisfy the necessary and sufficient conditions of Chichilnisky and Heal (1983) for aggregation rules satisfying my axioms, which are valid in all topologies. Theorem 4 constructs a family of aggregation rules satisfying my axioms for these three spaces. What these spaces have in common is a unique maximum (or peak). This rather special property makes them contractible, and thus amenable to aggregation rules satisfying anonymity and unanimity, Chichilnisky (1980 1982). The results presented here clarify an erroneous example in LeBreton and Uriarte (1990a, b) and respond to Baigent (1984, 1985, 1987) and Baigent and Huang (1990) on the relative advantages of continuous and discrete approaches to Social Choice.

Keywords: topology; mathematical economics; social choice; preferences (search for similar items in EconPapers)
JEL-codes: C02 D71 (search for similar items in EconPapers)
Date: 1990-07-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/8353/1/MPRA_paper_8353.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:8353

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:8353