European higher education policies and the problem of estimating a complex model with a small cross-section
Gabriele Marconi
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper discusses the components on components regression, a statistical technique suitable for explorative analyses of small datasets containing multiple independent, mediating and dependent variables. This method is compared to ordinary least squares and principal component regression by means of discussion of their properties and the assumptions underlying these estimators, a simulation and an empirical application to European higher education policy, and economic innovativeness in 32 countries. In the datasets used in this paper, the components on components regression yields more precise estimates of the coefficients of association between independent, mediating and dependent variables, compared to ordinary least squares. Compared to the principal components regression, it leads to a more parsimonious empirical model. The simulation also shows that the standard errors of the coefficients estimated with the components on components regression can be obtained by bootstrapping.
Keywords: principal; components; regression; –; OLS; –; small; sample; –; explorative; research; –; higher; education; policies; –; Montecarlo; simulation (search for similar items in EconPapers)
JEL-codes: C13 C38 J24 O38 (search for similar items in EconPapers)
Date: 2014-12-14
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/87600/8/MPRA_paper_87600.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:87600
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().