Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation
Stavros Michailos,
David Parker and
Colin Webb
MPRA Paper from University Library of Munich, Germany
Abstract:
Ethanol production from non-edible feedstock has received significant attention over the past two decades. The utilisation of agricultural residues within the biorefinery concept can positively contribute to the renewable production of fuels. To this end, this study proposes the utilisation of bagasse in a hybrid conversion route for ethanol production. The main steps of the process are the gasification of the raw material followed by syngas fermentation to ethanol. Aspen plus was utilised to rigorously design the biorefinery coupled with Matlab to perform process optimisation. Based on the simulations, ethanol can be produced at a rate of 283 L per dry tonne of bagasse, achieving energy efficiency of 43% and according to the environmental analysis, is associated with low CO2 emissions. The conduction of a typical discounted cash flow analysis resulted in a minimum ethanol selling price of 0.69 $ L−1. The study concludes with multiobjective optimisation setting as objective functions the conflictive concepts of total investment costs and exergy efficiency. The total cost rate of the system is minimised whereas the exergy efficiency is maximised by using a genetic algorithm. This way, various process configurations and trade-offs between the investigated criteria were analysed for the proposed biorefinery system.
Keywords: Second; generation; ethanol; ·; Syngas; fermentation; ·; Technoeconomic; analysis; ·; Sustainability; analysis; ·; Process; simulation; ·; Multiobjective; optimisation (search for similar items in EconPapers)
JEL-codes: Q1 Q16 (search for similar items in EconPapers)
Date: 2017-12-27
New Economics Papers: this item is included in nep-agr, nep-ene and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/87640/1/MPRA_paper_87640.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:87640
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().