EconPapers    
Economics at your fingertips  
 

Application of Artificial Neural Networks in Cold Rolling Process

Tamaraebi Atuwo

MPRA Paper from University Library of Munich, Germany

Abstract: Rolling is one of the most complicated processes in metal forming. Knowing the exact amount of basic parameters, especially inter-stand tensions can be effective in controlling other parameters in this process. Inter-stand tensions affect rolling pressure, rolling force, forward and backward slips and neutral angle. Calculating this effect is an important step in continuous rolling design and control. Since inter-stand tensions cannot be calculated analytically, attempt is made to describes an approach based on artificial neural network (ANN) in order to identify the applied parameters in a cold tandem rolling mill. Due to the limited experimental data, in this subject a five stand tandem cold rolling mill is simulated through finite element method. The outputs of the FE simulation are applied in training the network and then, the network is employed for prediction of tensions in a tandem cold rolling mill. Here, after changing and checking the different designs of the network, the 11-42-4 structure by one hidden layer is selected as the best network. The verification factor of ANN results according to experimental data are over R=0.9586 for training and testing the data sets. The experimental results obtained from the five stands tandem cold rolling mill. This paper proposed new ANN for prediction of inter-stand tensions. Also, this ANN method shows a fuzzy control algorithm for investigating the effect of front and back tensions on reducing the thickness deviations of hot rolled steel strips. The average of the training and testing data sets is mentioned 0.9586. It means they have variable values which are discussed in details in section 4. According to Table 7, this proposed ANN model has the correlation coefficients of 0.9586, 0.9798, 0.9762 and 0.9742, respectively for training data sets and 0.9905, 0.9798, 0.9762 and 0.9803, respectively for the testing data sets. These obtained numbers indicate the acceptable accuracy of the ANN method in predicting the inter-stand tensions of the rolling tandem mill. This method provides a highly accurate solution with reduced computational time and is suitable for on-line control or optimization in tandem cold rolling mills. Due to the limited experimental data, for data extraction for the ANN simulation, a 2D tandem cold rolling process is simulated using ABAQUS 6.9 software. For designing a network for this rolling problem, various structures of neural networks are studied in MATLAB 7.8 software.

Keywords: Artificial neural networks; Computational time; On-line control; Finite element modeling; Training and testing data; Tandem cold rolling mill; Hidden layer (search for similar items in EconPapers)
JEL-codes: L16 L61 L63 L71 L72 (search for similar items in EconPapers)
Date: 2018-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in International Journal of Control Science and Engineering 8.1(2018): pp. 22-30

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/88520/1/MPRA_paper_88520.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:88520

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:88520