Model-Based Quantification of Load Shift Potentials and Optimized Charging of Electric Vehicles
Tobias Hahn,
Martin Schönfelder,
Patrick Jochem,
Vincent Heuveline and
Wolf Fichtner
MPRA Paper from University Library of Munich, Germany
Abstract:
Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.
Keywords: Electric Mobility; Load Shifting; Charging Management; Optimization (search for similar items in EconPapers)
JEL-codes: O33 R42 (search for similar items in EconPapers)
Date: 2013-07-11, Revised 2013-07-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/91613/1/MPRA_paper_91613.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:91613
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().