Cluster Analysis of Panel Choosing the Optimal Set of Instruments from Large Instrument Setsusing Non-Standard Optimisation of Information Criteria
George Kapetanios
No 534, Working Papers from Queen Mary University of London, School of Economics and Finance
Abstract:
It is well known that instrumental variables (IV) estimation is sensitive to the choice of instruments both in small samples and asymptotically. Recently, Donald and Newey (2001) suggested a simple method for choosing the instrument set. The method involves minimising the approximate mean square error (MSE) of a given IV estimator where the MSE is obtained using refined asymptotic theory. An issue with the work of Donald and Newey (2001) is the fact that when considering large sets of valid instruments, it is not clear how to order the instruments in order to choose which ones ought to be included in the estimation. The present paper provides a possible solution to the problem using nonstandard optimisation algorithms. The properties of the algorithms are discussed. A Monte Carlo study illustrates the potential of the new method.
Keywords: Instrumental Variables; MSE; Simulated Annealing; Genetic Algorithms (search for similar items in EconPapers)
JEL-codes: C12 C15 C23 (search for similar items in EconPapers)
Date: 2005-05-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.qmul.ac.uk/sef/media/econ/research/wor ... 2005/items/wp534.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:qmw:qmwecw:534
Access Statistics for this paper
More papers in Working Papers from Queen Mary University of London, School of Economics and Finance Contact information at EDIRC.
Bibliographic data for series maintained by Nicholas Owen ( this e-mail address is bad, please contact ).