EconPapers    
Economics at your fingertips  
 

A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices

Natalia Bailey (), M Pesaran () and L. Vanessa Smith
Additional contact information
L. Vanessa Smith: University of York

No 764, Working Papers from Queen Mary University of London, School of Economics and Finance

Abstract: This paper proposes a regularisation method for the estimation of large covariance matrices that uses insights from the multiple testing (MT) literature. The approach tests the statistical significance of individual pair-wise correlations and sets to zero those elements that are not statistically significant, taking account of the multiple testing nature of the problem. By using the inverse of the normal distribution at a predetermined significance level, it circumvents the challenge of estimating the theoretical constant arising in the rate of convergence of existing thresholding estimators, and hence it is easy to implement and does not require cross-validation. The MT estimator of the sample correlation matrix is shown to be consistent in the spectral and Frobenius norms, and in terms of support recovery, so long as the true covariance matrix is sparse. The performance of the proposed MT estimator is compared to a number of other estimators in the literature using Monte Carlo experiments. It is shown that the MT estimator performs well and tends to outperform the other estimators, particularly when the cross section dimension, N, is larger than the time series dimension, T.

Keywords: Sparse correlation matrices; High-dimensional data; Multiple testing; Thresholding; Shrinkage (search for similar items in EconPapers)
JEL-codes: C13 C58 (search for similar items in EconPapers)
Date: 2015-12-18
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.qmul.ac.uk/sef/media/econ/research/wor ... 2015/items/wp764.pdf (application/pdf)

Related works:
Journal Article: A multiple testing approach to the regularisation of large sample correlation matrices (2019) Downloads
Working Paper: A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices (2015) Downloads
Working Paper: A multiple testing approach to the regularisation of large sample correlation matrices (2014) Downloads
Working Paper: A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices (2014) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:qmw:qmwecw:764

Access Statistics for this paper

More papers in Working Papers from Queen Mary University of London, School of Economics and Finance Contact information at EDIRC.
Bibliographic data for series maintained by Nicholas Owen ( this e-mail address is bad, please contact ).

 
Page updated 2021-10-11
Handle: RePEc:qmw:qmwecw:764