Modelling Market Crashes: The Worst Case Scenario
Philip Hua and
Paul Wilmott
OFRC Working Papers Series from Oxford Financial Research Centre
Abstract:
Jump diffusion models have two weaknesses: they don't allow you to hedge and the parameters are very hard to measure. Nobody likes a model that tells you that hedging is impossible (even though that may correspond to common sense) and in the classical jump-diffusion model of Merton the best that you can do is a kind of average hedging. It may be quite easy to estimate the impact of a rare event such as a crash, but estimating the probability of that rare event is another matter. In this paper we discuss a model for pricing and hedging a portfolio of derivatives that takes into account the effect of an extreme movement in the underlying but we will make no assumptions about the timing of this 'crash' or the probability distribution of its size except that we put an upper bound on the latter. This effectively gets around the difficulty of estimating the likelihood of the rare event. The pricing follows from the assumption that the worst scenario actually happens i.e. the size and time of the crash are such as to give the option its worst value. And hedging, delta and static hedging, will continue to play a key role.
Date: 1999
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.finance.ox.ac.uk/file_links/finecon_papers/1999mf24.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 500 Can't connect to www.finance.ox.ac.uk:80 (No such host is known. )
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sbs:wpsefe:1999mf24
Access Statistics for this paper
More papers in OFRC Working Papers Series from Oxford Financial Research Centre Contact information at EDIRC.
Bibliographic data for series maintained by Maxine Collett ().