WAVELET-BASED ESTIMATION PROCEDURES FOR SEASONAL LONG-MEMORY MODELS
Brandon Whitcher
Additional contact information
Brandon Whitcher: EURANDOM
No 148, Computing in Economics and Finance 2000 from Society for Computational Economics
Abstract:
The appearance of long-range dependence has been observed in a wide variety of real-word time series. So called long-memory models, which exhibit a slowly decaying autocovariance sequence and a pole at frequency zero in their spectral density function, have been used to characterize long-range dependence parsimoniously. A generalization of such models allows the pole in the spectral density function to be placed anywhere in the frequency interval causing a slowly decaying oscillating autocovariance sequence. This is known as the so called seasonal long-memory model. While an exact method for maximizing the likelihood exists and a semiparametric Whittle approximation has been proposed, we investigate two estimating procedures using the discrete wavelet packet transform: an approximate maximum likelihood method and an ordinary least squares method. We utilize the known decorrelating properties of the wavelet transform to allow us to assume a simplified variance-covariance structure for the seasonal long-memory model. We describe our computational procedures and explore the versatility gained by using the wavelet transform. As an example, we fit a seasonal long-memory model to an observed time series. The proposed wavelet-based techniques offer useful and computationally efficient alternatives to previous time and frequency domain methods.
Date: 2000-07-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://fmwww.bc.edu/cef00/papers/paper148.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf0:148
Access Statistics for this paper
More papers in Computing in Economics and Finance 2000 from Society for Computational Economics CEF 2000, Departament d'Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas, 25,27, 08005, Barcelona, Spain. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().