EconPapers    
Economics at your fingertips  
 

A SEMI-NONPARAMETRIC ESTIMATOR FOR COUNTS WITH AN ENDOGENOUS DUMMY VARIABLE

Andres Romeu () and Angel Marcos Vera-Hernndez
Additional contact information
Angel Marcos Vera-Hernndez: Universitat Autonoma de Barcelona

Authors registered in the RePEc Author Service: Marcos Vera-Hernandez ()

No 37, Computing in Economics and Finance 2000 from Society for Computational Economics

Abstract: Treating endogeneity and flexibility in such a way that efficiency is not sacrificed constitutes a rising point of interest in count data models. Endogeneity typically appears when unobservable characteristics affect both the count outcome and individuals decision represented by the dummy variable. Thus, we use numerical quadrature to integrate out the unobserved components. Also count data often shows empirical distributions that fit poorly the standard models in the literature. We estimate by Full Information Maximum Likelihood, where we allow for a polynomial expansion of the Poisson specification. Due to the multipe local optima appearing, we apply the Simulated Annealing optimization algorithm. We also develop statistics for sensibility analysis. Model evaluation is performed using measures of goodness of fit, information criteria, likelihood ratio and scores tests. We test our model using data on the number of trips by households and number of physician office visits. In the first case, a low polynomial degree suffices to yield a good fit, while in the latter, results are still to come.

Date: 2000-07-05
References: Add references at CitEc
Citations: Track citations by RSS feed

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Working Paper: A SEMI-NONPARAMETRIC ESTIMATOR FOR COUNTS WITH AN ENDOGENOUS DUMMY. VARIABLE Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf0:37

Access Statistics for this paper

More papers in Computing in Economics and Finance 2000 from Society for Computational Economics CEF 2000, Departament d'Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas, 25,27, 08005, Barcelona, Spain. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2019-08-20
Handle: RePEc:sce:scecf0:37