Algorithmic Design and Beowulf Cluster Implementation of Stochastic Simulation Code of Stochastic Simulation Code for Large Scale Non Linear Models
Gary Anderson And Raymond Board
Authors registered in the RePEc Author Service: Gary Stanley Anderson
No 128, Computing in Economics and Finance 2001 from Society for Computational Economics
Abstract:
Anderson & Moore describe a powerful method for solving linear saddle point models. The algorithm has proved useful in a wide array of applications including analyzing linear perfect foresight models, providing initial solutions and asymptotic constraints for nonlinear models. However, many algorithmic design choices remain in selecting components of a nonlinear certainty equivalence equation solver. This paper describes the present state of development of this set of tools. The paper descibes the results of simulation experiments using the FRBUS quarterly econometric model and the Canada Model. The paper provides data characterizing the impact of solution path length, initial path guess, terminal constraint strategy and strategies for exploiting sparsity on computation time, solution accuracy and memory requirements. The paper compares algorithm performance on traditional unix platform with our recent Beowulf Cluster Parallel Computation Implementation.
Keywords: beowulf; parallel; stack algorithm; anderson-moore algortithm (search for similar items in EconPapers)
JEL-codes: C63 (search for similar items in EconPapers)
Date: 2001-04-01
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf1:128
Access Statistics for this paper
More papers in Computing in Economics and Finance 2001 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().