Speculative option valuation: A supercomputing approach
Enrico Scalas,
Alessandro Vivoli,
Paride Dagna and
Guido Germano
No 269, Computing in Economics and Finance 2004 from Society for Computational Economics
Abstract:
The fast increase in computing power makes it possible to rapidly generate synthetic high frequency financial time series by Monte Carlo with any desired distribution of the increments and of the waiting times between increments, even for sets of securities as large as those traded on a whole exchange. We developed a parallel MPI code and tested it on Europe's fastest supercomputer (Jump at the FZ Juelich) for several hundred parameter values of continuous-time random walks as the phenomenological model of the time series. These parameters are the index alpha of a Levy density function for the price increments, and the order beta of a Mittag-Leffler density function for the waiting times (fractional diffusion). However, also autoregressive processes as well as cross-correlation can be easily implemented in the same programming framework. An estimation of the parameters from historic time series allows speculative option valuation from the expected payoffs. Comparing so obtained option values with market prices provides an indication of the goodness of the phenomenological model. References: E. Scalas, "Speculative option valuation and the fractional diffusion equation", Communication to the FDA'04 conference, Bordeaux, July 19-20, 2004; R. Engle, J. Russell, "Autoregressive Conditional Duration: a new model for irregularly spaced transaction data", Econometrica 66, 1127-1162 (1998)
Keywords: Artificial financial markets; Monte Carlo; fractional diffusion (search for similar items in EconPapers)
JEL-codes: C15 C16 C22 G13 (search for similar items in EconPapers)
Date: 2004-08-11
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf4:269
Access Statistics for this paper
More papers in Computing in Economics and Finance 2004 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().