EconPapers    
Economics at your fingertips  
 

Time Series Filtering through Chebyshev Polynomials

Gonul Turhan-Sayan and Serdar Sayan

No 287, Computing in Economics and Finance 2004 from Society for Computational Economics

Abstract: This paper comparatively evaluates performances of widely-used filters employed to separate the trend of a given non-stationary time series from its cyclical components, against a Chebyshev polynomial-based filter designed for this purpose. The performances of detrending techniques under consideration are measured by their ability to capture cyclical components of a special series with known properties, constructed to serve as a benchmark. We demonstrate that detrending performances of conventional techniques such as the line fitting method, Hodrick-Prescott and Band-Pass filters can easily be matched by fitting a Chebyshev polynomial to the given time series. This approach offers an additional advantage as the smoothness of the extracted trend –and hence, the frequency content of the detrended series– can effectively be controlled by changing the highest order of the polynomial. As an illustration of the use of this approach in the analysis of stock market data, we analyze the behavior of ISE-100 index of Istanbul Stock Exchange, a highly volatile series, over the period from July 9, 1990 to date.

Keywords: Filtering and time-frequency representation techniques; Chebyshev polynomials (search for similar items in EconPapers)
JEL-codes: C22 E32 (search for similar items in EconPapers)
Date: 2004-08-11
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf4:287

Access Statistics for this paper

More papers in Computing in Economics and Finance 2004 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2024-06-27
Handle: RePEc:sce:scecf4:287