EconPapers    
Economics at your fingertips  
 

A Simple Adaptive Method for Time-Series Forecasting

Petr Kln and Georges Darbellay ()
Additional contact information
Georges Darbellay: Institute of Computer Science, Academy of Sciences of the Czech Republic

Computing in Economics and Finance 1996 from Society for Computational Economics

Abstract: Many financial time series look erratic and their evolution is notoriously hard to forecast. Most if not all economist do not see financial markets as being governed by some low-dimensional system of deterministic equations. Rather, it is generally accepted that financial variables evolve under the influence of a high number of factors. Therefore, it appears sensible to model such systems within a stochastic framework. In this paper we present an information- theoretic approach to the problem of estimating an adaptive stochastic model for forecasting the short-term evolution of ``difficult discrete time sequences. As the estimation of the model parameters is very fast, the time scale may be very short. The model is adaptive in the sense that both the set of past data, used for forecasting the next value, as well as their probability masses are automatically adjusted at each step. By ``difficult time sequence we understand that the conditional probability density of every new value conditioned on the knowledge of past data is near to the uniform distribution. In other words, there is a lot of uncertainty in the relation between the newest value and past data.

References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.unige.ch/ce/ce96/ps/klan.eps (application/postscript)
Our link check indicates that this URL is bad, the error code is: 404 Not Found

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf6:_030

Access Statistics for this paper

More papers in Computing in Economics and Finance 1996 from Society for Computational Economics Department of Econometrics, University of Geneva, 102 Bd Carl-Vogt, 1211 Geneva 4, Switzerland. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-20
Handle: RePEc:sce:scecf6:_030