Alpha-Stable Consistent Model Specification Tests for Heavy-Tailed Neural Networks Environments
Jonathan Hill (jonathan.hill@colorado.edu)
Additional contact information
Jonathan Hill: University of Colorado
No 1041, Computing in Economics and Finance 1999 from Society for Computational Economics
Abstract:
This paper investigates applications of stable-law limiting theory to model specification tests in which non-linearities are sought in data that exhibit bounded maximal moments. Utilizing the stable-laws allows us for the first time to prove that consistent conditional moment tests (CM) of a functional form within neural network environments are not chi-squared in distribution. In addition, we prove that CM tests suffer a dramatic loss in power when moments greater than two are infinite. Furthermore, we offer for the first time a set of computationally cheapest statistics that are stable-functionals of suitable moment conditions. The new statistics are suitable for all iid and serially dependent data processes and are directly applicable to neural network learning in financial time-series models. The stable-law statistics are invariant to moment condition failure, remain maximally powerful under mild conditions, and do not require a restrictive orthogonality condition under the null hypothesis. Simulation experiments indicate that CM tests are far more likely to predict non-linearity erroneously in data than true chi-squared distributions imply. Moreover, in comparison, for certain data environments, the new stable-law statistics demonstrate perfect power for all levels of moment condition failure.
Date: 1999-03-01
New Economics Papers: this item is included in nep-ets
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf9:1041
Access Statistics for this paper
More papers in Computing in Economics and Finance 1999 from Society for Computational Economics CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum (baum@bc.edu).