Efficient Monte Carlo Likelihood Analysis of Panel Data Models with Unobserved Heterogeneity in Time and across Individual Units
Jean-Francois Richard
No 531, Computing in Economics and Finance 1999 from Society for Computational Economics
Abstract:
Unobserved random heterogeneity plays a central role in many socio-economic studies based upon panel data. When jointly present across individual units and over time its treatment requires (very) high-dimensional integrations which are analytically intractable in non-linear models and, therefore, have to be estimated by Monte Carlo simulation techniques. Existing procedures, essentially Methods of Simulated Moments and Scores (MSM, MSS) are somewhat limited in scope and, moreover, being based upon joint simulation of the unobservables and observables, do not allow for ex-post estimation of the heterogeneity components themselves, a key component of the validation of any empirical panel data models. In the present contribution I demonstrate how to apply Efficient Importance Sampling (EIS) to a high-dimensional logit model with unobserved heterogeneity along both dimensions to compute numerically accurate ML estimators as well as likelihood based test statistics. Most importantly I also provide estimates for the posterior expectations of the heterogeneity components themselves and discuss how these estimates can be used for (mis)specification analysis. I also discuss a number of important numerical issues in relation with the development of numerically robust and users-friendly computer programs for these procedures. Extensions to a broad range of non- linear panel data models with unobserved heterogeneity are also discussed. Last but not least real-life applications in progress will be used to illustrate the performance of these programs.
Date: 1999-03-01
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf9:531
Access Statistics for this paper
More papers in Computing in Economics and Finance 1999 from Society for Computational Economics CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().