Using Simulation Methods for Bayesian Econometric Models
John Geweke
No 832, Computing in Economics and Finance 1999 from Society for Computational Economics
Abstract:
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and their implementation using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. The paper shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators.
Date: 1999-03-01
References: Add references at CitEc
Citations: View citations in EconPapers (689)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf9:832
Access Statistics for this paper
More papers in Computing in Economics and Finance 1999 from Society for Computational Economics CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().