EconPapers    
Economics at your fingertips  
 

Nonlinear State-Space Models for Microeconometric Panel Data

Florian Heiss

No 285, Computing in Economics and Finance 2006 from Society for Computational Economics

Abstract: In applied microeconometric panel data analyses, time-constant random effects and first-order Markov chains are the most prevalent structures to account for intertemporal correlations in limited dependent variable models. An example from health economics shows that the addition of a simple autoregressive error terms leads to a more plausible and parsimonious model which also captures the dynamic features better. The computational problems encountered in the estimation of such models -- and a broader class formulated in the framework of nonlinear state space models -- hampers their widespread use. This paper discusses the application of different nonlinear filtering approaches developed in the time-series literature to these models and suggests that a straightforward algorithm based on sequential Gaussian quadrature can be expected to perform well in this setting. This conjecture is impressively confirmed by an extensive analysis of the example application.

Keywords: State-Space Models; Microeconometric Panel Data; Multiple Integration (search for similar items in EconPapers)
JEL-codes: C15 C51 I12 (search for similar items in EconPapers)
Date: 2006-07-04
References: Add references at CitEc
Citations: View citations in EconPapers (2)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Working Paper: Nonlinear State-Space Models for Microeconometric Panel Data (2006) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecfa:285

Access Statistics for this paper

More papers in Computing in Economics and Finance 2006 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-04-03
Handle: RePEc:sce:scecfa:285