EconPapers    
Economics at your fingertips  
 

A Reliable Technique for Accurately Computing Unconditional Variances

Gary Anderson

No 291, Computing in Economics and Finance 2006 from Society for Computational Economics

Abstract: This paper provides formulae for computing perturbation method approximations of unconditional variances of variables in nonlinear DSGE models. Spurious higher order terms that creep into multi-step ahead forecasts can produce explosive time paths frustrating traditional approaches to estimating unconditional covariances. They have developed a pruning solution to preempt this specious explosive behavior. This paper outlines a more direct approach to approximating unconditional covariances. By, in effect, explicitly including long forecast of powers of endogenous variables among the DSGE model equations, one can obtain perturbation method approximations for the covariances along with the other Taylor series approximation equations. Explicit formulae for computing perturbation solutions for models with multiple leads makes including such long horizon forecasts computational feasible. Furthermore, in this formulation, the coefficients associated with the initial conditions for the state variables provide useful diagnostic information about the accuracy of the unconditional variance approximation. This paper (i) applies the technique to linear models, where explicit formulae for unconditional covariances are available, to motivate and validate the performance of the technique. (ii) contrasts and compares the accuracy, computational, efficiency and tractability for this method and the pruning method.

Keywords: perturbation method; DSGE; unconditional covariance (search for similar items in EconPapers)
JEL-codes: C63 C65 (search for similar items in EconPapers)
Date: 2006-07-04
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecfa:291

Access Statistics for this paper

More papers in Computing in Economics and Finance 2006 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-20
Handle: RePEc:sce:scecfa:291