EconPapers    
Economics at your fingertips  
 

Structured Hidden Markov Models

Jan Bulla and Ingo Bulla
Additional contact information
Jan Bulla: Georg-August-University Goettingen
Ingo Bulla: Université de Bretagne-Occidentale

No 437, Computing in Economics and Finance 2006 from Society for Computational Economics

Abstract: The lion’s share of hidden Markov models (HMMs) /Markov regime switching models considered in economic research incorporates a comparably small number of states. The popularity of models with mostly two or three states principally results from their good interpretability: often regime changes can be linked to abrupt external events. A further reason lies in the number of parameters of the transition probability matrix (TPM) having a growth rate which is quadratic in the number of states. Thus, the estimation procedures quickly become unstable and strongly dependent on the choice of the initial values due to overparametrization. From the intuitive point of view it is at least discussible whether, e.g., macroeconomic or political changes are not anticipated. If this is the case, HMMs with comparably smooth transition between many states constitute an attractive alternative. We present structured hidden Markov model (SHMMs). The SHMM approach reduces the number of parameters significantly by providing the TPM with a distinct architecture. We compare the performance of SHMMs with common HMMs in the context of return series. Moreover, we present an implementation of the estimation procedures via the freely available software package R

Keywords: Hidden Markov model; Number of States; Structured Hidden Markov Model; Return Series; Overparameterization (search for similar items in EconPapers)
JEL-codes: C32 C63 (search for similar items in EconPapers)
Date: 2006-07-04
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecfa:437

Access Statistics for this paper

More papers in Computing in Economics and Finance 2006 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-04-12
Handle: RePEc:sce:scecfa:437