EconPapers    
Economics at your fingertips  
 

Semi-Markov Regime Switching Regression Models

Ingo Bulla ()
Additional contact information
Ingo Bulla: Laboratoire de Mathématiques Université de Bretagne Occidentale

No 438, Computing in Economics and Finance 2006 from Society for Computational Economics

Abstract: Markov switching regression processes belong to the class of Hidden Markov models (HMMs). They provide a higher flexibility than, for example, simple (auto)regression. The main reason for their popularity is the convenient interpretability. For sufficiently long time series, the different regimes can be associated with abrupt macroeconomic events (war, changing governmental policy,etc.). However, it is not always intuitively clear why the regime switching follows a Markov law. Hidden semi-Markov models (HSMMs) are an extension of HMMs. The most appealing property of a HSMM lies in the flexibility of the runlength distributions which are given explicitly instead of implicitly following the geometric distributions of a HMM. We present a generalization of the Markov regime switching framework and introduce the semi-Markov switching (auto)regressive processes. In particular, we focus on the theory for right-censored HSMMs introduced by Guédon in 2003. We present an EM algorithm for auto(regression) models with different state occupancy distributions. Subsequently, we investigate a modified, computational convenient M-step in terms of the One-Step-Late. Finally, the performance of the estimation procedure is analyzed using an economic data set

Keywords: Hidden semi-Markov model; One-Step-Late algorithm; regime switching; regression; right-censoring (search for similar items in EconPapers)
JEL-codes: C32 C34 C63 (search for similar items in EconPapers)
Date: 2006-07-04
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecfa:438

Access Statistics for this paper

More papers in Computing in Economics and Finance 2006 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-04-12
Handle: RePEc:sce:scecfa:438