EconPapers    
Economics at your fingertips  
 

Implied binomial trees and calibration for the volatility smile

C. Charalambous (), N. Christofides, E. D. Constantinide and S. H. Martzoukos
Additional contact information
C. Charalambous: University of Cyprus
N. Christofides: Imperial College
E. D. Constantinide: University of Cyprus
S. H. Martzoukos: University of Cyprus

No 530, Computing in Economics and Finance 2006 from Society for Computational Economics

Abstract: In this paper we capture the implied distribution from option market data using non-recombining binomial trees allowing the local volatility to be a function of the underlying asset and of time. We elaborate on the initial guess for the volatility term structure, and use non-linear constrained optimization to minimize the least square error function on market prices. The proposed model can accommodate European options with single maturities and, with minor modifications, options with multiple maturities. It can provide a market-consistent tree for option replication with transaction costs (often this requires a non-recombining tree) and can help pricing of exotic and Over The Counter (OTC) options. We test our model using options data of the FTSE-100 index obtained from LIFFE. The results strongly support our modelling approach

Date: 2006-07-04
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecfa:530

Access Statistics for this paper

More papers in Computing in Economics and Finance 2006 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-04-12
Handle: RePEc:sce:scecfa:530