Gini-PLS Regressions
Stéphane Mussard and
Fattouma Souissi-Benrejab
Additional contact information
Fattouma Souissi-Benrejab: LAMETA, Universite Montpellier I
Authors registered in the RePEc Author Service: Fattouma SOUISSI BENREJAB
Cahiers de recherche from Departement d'économique de l'École de gestion à l'Université de Sherbrooke
Abstract:
Data contamination and excessive correlations between regressors (multicollinear- ity) constitute a standard and major problem in econometrics. Two techniques en- able solving these problems, in separate ways: the Gini regression for the former, and the PLS (partial least squares) regression for the latter. Gini-PLS regressions are proposed in order to treat extreme values and multicollinearity simultaneously.
Keywords: Gini covariance; Gini Regression; Gini-PLS Regressions; PLS Regression. (search for similar items in EconPapers)
JEL-codes: C3 C8 (search for similar items in EconPapers)
Pages: 30 pages
Date: 2015-02, Revised 2017-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://gredi.recherche.usherbrooke.ca/wpapers/GREDI-1702.pdf (application/pdf)
Related works:
Journal Article: Gini-PLS Regressions (2019) 
Working Paper: Gini-PLS Regressions (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:shr:wpaper:17-02
Access Statistics for this paper
More papers in Cahiers de recherche from Departement d'économique de l'École de gestion à l'Université de Sherbrooke Contact information at EDIRC.
Bibliographic data for series maintained by Jean-François Rouillard ().