On Nonparametric and Semiparametric Testing for Multivariate Time Series
Yoshihiro Yajima () and
Yasumasa Matsuda
No CIRJE-F-253, CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo
Abstract:
We formulate nonparametric and semiparametric hypothesis testing of multivariate stationary time series in a unified fashion and propose new test statistics based on estimators of the spectral density matrix. The limiting distributions of these test statistics under null hypotheses are always normal distributions and they are implemented easily for practical use. While if null hypotheses are false, as n, the sample size, goes to infinity, they diverge to infinity faster than the parametric rate n1/2. They can be applied to various null hypotheses such as the independence between the component series, the equality of the autocovariance functions or the autocorrelation functions of the component series, and the separability of the covariance matrix function.
Pages: 39 pages
Date: 2003-12
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tky:fseres:2003cf253
Access Statistics for this paper
More papers in CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by CIRJE administrative office ().